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Abstract. This paper describes the second major release of the Earth System Model Evaluation Tool (ESMValTool), a commu-

nity diagnostic and performance metrics tool for the evaluation of Earth System Models (ESMs) participating in the Coupled

Model Intercomparison Project (CMIP). Compared to version 1.0, released in 2016, ESMValTool version 2.0 (v2.0) features

a brand new design, with an improved interface and a revised preprocessor. It also features a significantly enhanced diagnostic

part that is described in three companion papers. The new version of the ESMValTool has been specifically developed to target5

the increased data volume of CMIP Phase 6 (CMIP6) and the related challenges posed by the analysis and the evaluation of

output from multiple high-resolution or complex ESMs. The new version takes advantage of state-of-the-art computational

libraries and methods to deploy an efficient and user-friendly data processing. Common operations on the input data (such

as regridding or computation of multi-model statistics) are centralized in a highly optimized preprocessor, which allows ap-

plying a series of preprocessing functions before diagnostics scripts are applied for in-depth scientific analysis of the model10

output. Performance tests conducted on a set of standard diagnostics show that the new version is faster than its predecessor by

about a factor of three. The performance can be further improved, up to a factor of more than 30, when the newly-introduced

task-based parallelization options are used, which enable the efficient exploitation of much larger computing infrastructures.

ESMValTool v2.0 also includes a revised and simplified installation procedure, setting of user configurable options based on

modern language formats, and high code quality standards following the best practices for software development.15
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1 Introduction

The future generations of ESM experiments will challenge the scientific community with an increasing amount of model

results to be analyzed, evaluated and interpreted. The data volume produced by CMIP5 (Taylor et al., 2012) was already above

2 Petabytes and it is estimated to grow by about one order of magnitude in CMIP6 (Eyring et al., 2016a). This is due to the

growing number of processes included in the participating models, the improved spatial and temporal resolutions, and the5

widening number of model experiments and participating model groups. Not only the larger volume of the output, but also

the higher spatial and temporal resolution and complexity of the participating models is posing significant challenges for the

data analysis. Besides these technical challenges, the variety of variables and scientific themes covered by the large number

(currently 23) of CMIP6-endorsed Model Intercomparison Projects (MIPs) is also rapidly expanding.

To support the community in this big data challenge, the ESMValTool (Eyring et al., 2016c) has been developed to provide10

a standardized, community-based software package for the systematic, efficient and well documented analysis of ESM results.

The ESMValTool provides a set of diagnostics and metrics scripts addressing various aspects of the Earth system that can be

applied to a wide range of input data, including models from CMIP and other model intercomparison projects, and observa-

tions. The tool has been designed to facilitate routine tasks of model developers, model users, and model output users, who

need to assess the robustness and confidence in the model results and evaluate the performance of models against observations15

or against predecessor versions of the same models. Version 1.0 of the ESMValTool was specifically designed to target CMIP5

models, but the growing amount of data being produced in CMIP6 motivated the development of an improved version, imple-

menting a more efficient and systematic approach for the analysis of ESM output as soon as the output is published to the Earth

System Grid Federation (ESGF, https://esgf.llnl.gov/), as also advocated in Eyring et al. (2016b).

This paper is the first in a series of four presenting ESMValTool v2.0 and it focuses on the technical aspects, highlights its20

new features and analyzes its numerical performance. The new diagnostics and the progress in scientific analyses implemented

in ESMValTool v2.0 are discussed in the companion papers: Eyring et al. (2019), Lauer et al. (2019), and Weigel et al. (2019).

A major bottleneck of ESMValTool v1.0 (Eyring et al., 2016c) was the relatively inefficient preprocessing of the input

data, leading to long computational times for running analyses and diagnostics, whenever a large data volume needed to be

processed. A significant part of this preprocessing consists of common operations, such as time subsetting, format checking,25

regridding, masking, calculating temporal and spatial statistics, etc., which are performed on the input data before a specific

scientific analysis is started. Ideally, these operations, collectively named preprocessing, should be centralized in the tool, in

a dedicated preprocessor. This was not the case in ESMValTool v1.0, where only a few of these pre-processing operations

were performed in such a centralized way, while most of them were applied within the individual diagnostic scripts. This

resulted in several drawbacks, such as slow performance, code duplication, lack of consistency among the different approaches30

implemented at the diagnostic level, and unclear documentation.

To address this bottleneck, ESMValTool v2.0 has been developed: this new version implements a fully revised preprocessor

addressing the above issues, resulting in dramatic improvements in the performance, as well as in the flexibility, applicability

and user friendliness of the tool itself. The revised preprocessor is fully written in Python 3 and takes advantage of the data
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abstraction features of the Iris library (Met Office, 2010-2019) to efficiently handle large volumes of data. In ESMValTool v2.0

the structure has been completely revised and now consists of an easy-to-install, well documented Python package providing

the core functionalities (ESMValCore), and a set of diagnostic routines. The ESMValTool v2.0 workflow is controlled by a set

of settings that the user provides via a configuration file and an ESMValTool recipe (called namelist in v1.0). Based on the

user settings, the ESMValCore reads in the input data (models and observations), applies the required preprocessing operations5

and writes the output to netCDF files. These preprocessed output files are then read by the diagnostics and furhter analyzed.

Writing the preprocessed output to a file, instead of storing it in memory and directly passing it as an object to the diagnostic

routines, is a requirement for the multi-language support of the diagnostic scripts. Multi-language support has always been one

of the ESMValTool main strengths, to allow a wider community of users and developers with different level of programming

knowledge and experience to contribute to the development of the ESMValTool by providing innovative and original analysis10

methods. As in ESMValTool v1.0, the preprocessing is still performed on a per-variable and per-dataset basis, meaning that

one netCDF file is generated for each variable and for each dataset. This follows the standard adopted by CMIP5 (and other

MIPs), which requires that data for a given variable and model is stored in an individual file (or in a series of files covering

only a part of the whole time-period in case of long time series).

To give ESMValTool users more control on the functionalities of the revised preprocessor, the ESMValTool recipe has15

been extended with more sections and entries. To this purpose, the YAML format (http://yaml.org/) has been chosen for the

ESMValTool recipes and consistently for all other configuration files in v2.0. The advantages of YAML include an easier to

read and more user-friendly code and the possibility for developers to directly translate YAML files into Python objects.

Moreover, significant improvements are introduced in this version for provenance and documentation: users are now pro-

vided with a comprehensive summary of all input data used by the ESMValTool for a given analysis and the output of each20

analysis is accompanied by detailed metadata (such as references and figure captions) and by a number of tags. These allow

to sort the results by, e.g., scientific theme, plot type, or domain, thereby greatly facilitating collecting and reporting results,

for example on browsable websites. Furthermore, a large part of the ESMValTool workflow manager and of the interface,

handling the communication between the Python core and the multi-language diagnostic packages at a lower level, have been

completely rewritten following the most recent coding standards for code syntax, automated testing, and documentation. These25

quality standards are strictly applied to the ESMValCore package, while for the diagnostics more relaxed standards are used to

allow a larger community to contribute code to the ESMValTool.

This paper is structured as follows: the revised structure and workflow of ESMValTool v2.0 are described in Sect. 2. The

main features of the new YAML-based recipe format are outlined in Sect. 3. Section 4 presents the functionalities of the revised

preprocessor, describing each of the preprocessing operations in detail as well as the capability of the ESMValTool to fix known30

problems with data sets and to reformat data. Additional features, such as the handling of external observational datasets,

provenance and tagging, as well as the automated testing are briefly summarized in Sect. 5. The progress in performance

achieved with this new version is analyzed in Sect. 6, where results of benchmark tests compared to the previous version are

presented for one representative recipe. Section 7 closes with a summary.
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Figure 1. Schematic representation of ESMValTool v2.0.

This manuscript aims at providing a general, technical overview of ESMValTool v2.0. For more detailed instructions on the

ESMValTool usage, users and developers are encouraged to take a look at the extensive ESMValTool documentation available

on Read the Docs (https://esmvaltool.readthedocs.io/).

2 Revised design, interface, and workflow

ESMValTool v2.0 has been completely redesigned to facilitate the development of core functionalities by the core development5

team, on the one hand, and the implementation of new scientific analyses (diagnostics and metrics) by diagnostic developers

and the application of the tool by the casual users, on the other hand. These two target groups typically have different levels

of programming experience: highly experienced programmers and software engineers are maintaining and developing the core

functionalities that affect the whole tool, while scientists or scientific programmers are mainly contributing new diagnostics

and analyses to the tool. A schematic representation of ESMValTool v2.0 is given in Fig. 1.10

ESMValTool v2.0 is distributed as a package containing the diagnostic code and related interfaces, while the core func-

tionalities are located in a Python package (ESMValCore), which is distributed via the Python package manager or via Conda

(https://www.anaconda.com/) and which is installed as a dependency of the ESMValTool during the installation procedure. The

procedure itself has been greatly improved over v1.0 and allows installing the ESMValTool and its dependencies using Conda

just following a few simple steps. No detailed knowledge of the ESMValCore is required by the users and scientific developers15

to run the ESMValTool or to extend it with new analyses and diagnostic routines. The ESMValCore package is developed and
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maintained in a dedicated public GitHub repository, where everybody is welcome to report issues, request new features, or

contribute new code with the help of the core development team. The ESMValCore can also be used as a stand-alone package,

providing an efficient preprocessor that can be utilized as part of other analysis workflows or coupled with different software

packages.

The ESMValCore contains a task manager that controls the workflow of the ESMValTool, a method to find and read input5

data, a fully revised preprocessor performing several common operations on the data (see Sect. 4), a message and provenance

logger, and the configuration files. The ESMValCore is installed as a dependency of the ESMValTool and it is coded as

a Python library (Python v3.7) which allows all preprocessor functions to be re-used by other software or used interactively,

for example from a Jupyter Notebook (https://jupyter.org/). The new interface for configuring the preprocessing functions

and the diagnostics scripts from the recipe is very flexible: it allows, for example, designing custom preprocessors (these are10

pipelines of configurable preprocessor functions acting on input data in a customizable order) and it allows each diagnostic

script to define its own settings. The new recipe format also allows the ESMValTool to perform validation of recipes and

settings, and to determine which parts of the processing can be executed in parallel, greatly reducing the run-time (see Sect. 6).

Although the ESMValCore is fully programmed in Python, multi-language support for the ESMValTool diagnostics is

provided, to allow a wider community of scientists to contribute their analysis software to the tool. ESMValTool v2.0 sup-15

ports diagnostics scripts in Python 3, NCL (NCAR Command Language, v6.6.2, https://www.ncl.ucar.edu/), R (v3.6.1, https:

//www.r-project.org/), and, since this version, Julia (v1.0.4, https://julialang.org/). Support for other freely available program-

ming languages for the diagnostic scripts can be added on request. The coupling between the ESMValCore and the diagnostics

is accomplished using temporary interface files generated at run-time for each variable-diagnostic combination. These files

contains all the information that a diagnostic script may require to be run, such as the path to the preprocessed data, the list of20

input datasets, the variable metadata, the diagnostic settings from the recipe, the destination path for result files and plots, etc.

The interface files are written by the ESMValCore preprocessor in the same language as the recipe (YAML, see Sect. 3), which

highly simplifies the coupling. An exception is NCL which does not support YAML and for which a dedicated interface file

structure has been introduced based on the NCL syntax.

ESMValTool v2.0 adopts modern standards for storing configuration files (YAML v1.2), data (netCDF4), and provenance25

information (W3C-PROV, using the Python package prov v1.5.3). Professional software development approaches such as

code review (through GibHub pull requests), automated testing and software quality monitoring (static code analysis and

a consistent coding style enforced through unit tests) ensure that the ESMValTool is reliable, well documented and easy to

maintain. These quality control practices are enforced for the ESMValCore package. For the diagnostic code standards are

somewhat more relaxed, since compliance to all of these standards can be quite challenging and may introduce unnecessary30

hurdles for scientists contributing their diagnostic code to the ESMValTool.
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3 New recipe format

To allow a flexible and comprehensive user control on the many new features of ESMValTool v2.0, a new format for the

configuration files defining datasets, preprocessing operations, and diagnostics (the so-called recipe) is introduced: YAML is

used to improve user readability of the numerous settings and to facilitate their passing through to the diagnostics code, as well

as the communication between the ESMValCore and the diagnostics.5

An ESMValTool v2.0 recipe consists of four sections: documentation, preprocessors, datasets and diagnostics. Within each of

these sections, settings are given as lists or as additional nested dictionaries for more complex settings. This allows controlling

many options and features at different levels in an intuitive way. The diagnostic package contains many example recipes that

can be used as a starting point to create more complex and extensive applications (see the companion papers for more details).

In the following, each of the four sections of the recipe is described. A few ESMValTool recipes are provided in the Supplement10

as a reference.

3.1 Documentation section

This section of the recipe provides a short description of its content and purpose, together with the (list of) author(s) and

project(s) which supported its development, and the corresponding reference(s). All these entries are specified using tags

which are defined in the references configuration file (config-references.yml) of the ESMValTool. At run-time, the recipe15

documentation is collected by the provenance logger (see Sect. 5.2), which translates the tags into full text string and adds them

to the output produced by the recipe itself.

3.2 Datasets section

This section replaces the MODELS section used in the ESMValTool v1.0 namelists and it is now called datasets to account for the

fact that not only models, but also observations or reanalyses can be listed here. The datasets to be processed by all diagnostics20

in the recipe are provided as a list of dictionaries, each containing predefined sets of key-value pairs that unambiguously define

the dataset itself. The required keys depend on the project class of the dataset (e.g. CMIP5, CMIP6, OBS, obs4mips, etc.)

and are defined in the developer configuration file (config-developer.yml) of the tool. Typically, the user does not need

to edit this file but only to provide the root path to the data in the user configuration file (config-user.yml). Based on the

information contained in both files, the tool reconstructs the full path of the dataset(s) to locate the input file(s). During the25

ESMValTool execution, the dataset dictionary is always combined with the variable dictionary defined in the diagnostic section

(see Sect. 3.4) into a single dictionary, such that the key-value pairs for the dataset and for the variable can be given in either

dictionary. This has several advantages, for example the same dataset can be defined for multiple variables from different mips

(such as the CMIP5 “Amon” and “Omon”), just defining the common keys in the dataset dictionary and the variable-specific

one (e.g., mip) in the variables dictionaries. The tool collects the dataset information by combining the keys from the two30

dictionaries, depending on the variable currently processed. This also makes the recipe more compact, since common keys,

such as project class or time period, have to be defined only once and not repeated for all datasets. As in v1.0, the datasets
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listed in the datasets section are processed for all diagnostics and variables defined in the recipes. Datasets to be used only by

a specific diagnostic or providing only a specific variable can be added as additional datasets in the diagnostic or in the variable

dictionary, respectively, using exactly the same syntax.

3.3 Preprocessors section

This is a new feature of ESMValTool v2.0: in the preprocessors section, one or more sets of preprocessing operations (pre-5

processors) can be defined. Each preprocessor is identified by a unique name and includes a list of operations and settings (see

Sect. 4 for details). Once defined, a preprocessor can be applied to an arbitrary number of variables listed in the diagnostics sec-

tion. This applies also when variable-specific settings are given in the preprocessor: it is possible, for example, to set a reference

dataset as a target grid for the regridding operator with the reference dataset being different for each variable. When parsing

the recipe, the tool automatically replaces these settings in the preprocessor definition with the corresponding variable settings,10

depending on the preprocessor-variable combination. The usage of the YAML format makes all these operations quite intuitive

for the user and easy to implement for the developer. The preprocessors section in a recipe is optional and can be omitted if

only the default preprocessing of the data is desired. The default preprocessor will apply fixes to the data (if required), perform

CMOR compliance checks and select the data for the requested time frame only.

3.4 Diagnostics section15

In the diagnostics section one or more diagnostics can be defined. Each diagnostic is identified by a name and contains one

or more variables and one or more diagnostic scripts. The variables and the scripts are defined as subsections of the diagnostics

section. This nested structure allows for the easy definition of complex diagnostics dealing with multiple variables and/or

applying multiple diagnostics scripts to the same set of variables. Within the variable dictionary, additional settings can be

defined, such as the preprocessor to be applied (as defined in the preprocessors section), the additional variable-specific datasets20

which are not included in the datasets section, and other variable-specific settings used by the diagnostic. The same can be done

for the scripts dictionary by providing a list of settings to customize the run-time behavior of a diagnostic, together with the

path to the diagnostic script itself. This feature replaces the language-specific cfg files that were used in ESMValTool v1.0 and

allows the centralization of all user-configurable settings in a single file (the recipe). Note that the diagnostic scripts subsection

can be left out, meaning that it is possible to only apply a given preprocessor to one or more variables without any further25

analysis, i.e. to use the ESMValTool just for preprocessing purposes.

3.5 Advanced recipe features

In an ESMValTool v2.0 recipe, it is also possible to make use of the anchor and reference capability of the YAML format in

order to avoid code duplication by re-using already defined recipe blocks and to keep the recipe compact. A list of settings

given in a diagnostics script dictionary can, for instance, be anchored and referenced in another script dictionary within the30
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same recipe, while changing only some of the settings in the list: a typical application is when the same diagnostic is applied

to multiple variables using each time a different set of contour levels for each plot while keeping other settings identical.

Another feature is the possibility of defining ancestors, i.e. tasks that have to be completed before a given diagnostic can

be run. This is useful for complex recipes in which a diagnostic collects and plots the results obtained by other diagnostics.

For example in recipe_perfmetrics_CMIP5.yml, the grading metrics for individual variables across many datasets are pre-5

calculated and then collected by another script which combines them into a portrait diagram.

4 Data preprocessing

A typical requirement for the analysis of output from ESMs is some preprocessing of the input data by a number of operators

which are quite common to many analyses and include, for instance, temporal and spatial subsetting, vertical and horizontal

regridding, masking, multi-model statistics, etc. As mentioned in the introduction, in ESMValTool v1.0 these operations were10

performed in two different parts of the tool: at the preprocessor level (as part of the Python-based workflow manager controlling

the ESMValTool) and at the diagnostic level (distributed across the various diagnostic scripts and only partly centralized in the

ESMValTool language-specific libraries). In ESMValTool v2.0, the code for these preprocessing operations is moved from the

diagnostic scripts to the completely rewritten and revised preprocessor within the ESMValCore package.

The structure of the revised preprocessor is schematically depicted in the light blue box in Fig. 1: each of the preprocessor15

functionalities is represented by a yellow box and can be controlled by a number of recipe settings, depicted by the purple tabs.

Some operations require user-provided scripts, e.g. for variable derivation or fixes to the CMOR format, which are represented

by the blue tabs. The figure shows the default order in which these operations are applied to the input data. This order has been

defined in a way that minimizes the loss of information through the various steps, although it may not always be the optimal

choice in terms of performance (see also Sect. 4.5). For example, regridding and multi-model statistics are applied before20

temporal and spatial averaging. This default order can be changed and customized by the user in the ESMValTool recipe,

although not all combinations are possible: multi-model statistics, for instance, can only be calculated after regridding the data.

The ESMValTool v2.0 preprocessor is entirely written in Python and takes advantage of the Iris library (v2.2.1) developed

by the Met Office (Met Office, 2010-2019). Iris is an open-source, community-driven Python 3 package for analyzing and

visualizing Earth science data, building upon the rich software stack available in the modern scientific Python ecosystem.25

Iris supports reading several different popular scientific file formats, including netCDF, into an internal format based on the

Climate and Forecast (CF) Metadata Convention (http://cfconventions.org/). Iris preserves the metadata that describe the data

allowing users to handle their multi-dimensional data within a meaningful, domain-specific context and through a rich and

expressive interface. Iris represents multi-dimensional data and the associated metadata for a single phenomenon through

the abstraction of a hypercube, also known as Iris cube, i.e. a multi-dimensional numerical array that stores the numerical30

values of a physical variable, coupled with a metadata object that fully describes the actual data. Iris cubes allow users to

perform a powerful and extensive range of cube operations from simple unit conversion, subsetting and extraction, merging

and concatenation to statistical aggregations and reductions, regridding and interpolation, and arithmetic operations. Internally,
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Iris keeps pace with the modern developments provided by the scientific Python community, to ensure that users continue to

benefit from advances in the Python ecosystem. In particular, Iris takes advantage of Dask (v2.3.0, https://dask.org/) to provide

lazy evaluation (meaning that the actual data do not have to be loaded into the memory before they are really needed) and out-

of-core processing, allowing Iris to perform at scale from efficient single-machine workflows through to multi-core clusters and

HPC machines. One of the major advantages of Iris, which motivated its adoption for the revised ESMValTool preprocessor,5

is its ability to load large datasets as cubes and to pass these objects from one module to another and alter them as needed

during the preprocessor workflow, while keeping all these stages in memory without need for time-intensive I/O operations.

Each of the preprocessor modules is a Python function that takes an Iris cube and an optional set of arguments as input and

returns a cube. The arguments controlling the operations to be performed by the modules are in most cases directly specified

in the ESMValTool recipe. This makes it easy to read therecipe and also allows simple re-use of the ESMValTool preprocessor10

functions in other software.

In addition to Iris, NumPy (v1.17, https://numpy.org/) and SciPy (v1.3.1, https://www.scipy.org/) for generic array and math-

ematical/statistical operations, the ESMValTool preprocessor uses some specialized packages like Python-stratify (v0.1, https:

//github.com/SciTools-incubator/Python-stratify) for vertical interpolation, ESMPY (v7.1.0, https://www.earthsystemcog.org/

projects/esmpy/) for regridding of irregular grids, and cf_units (v2.1.3, https://github.com/SciTools/cf-units) for standard-15

ization and conversion of physical units. Support for geographical maps is provided by the Cartopy library (v0.17.0, https:

//scitools.org.uk/cartopy/) and the Natural Earth dataset (v4.1.0, https://www.naturalearthdata.com/).

In the following, the ESMValTool preprocessor operations are described, together with their respective user settings. A sum-

mary of these settings is also given in Table 1.

4.1 Variable derivation20

The variable derivation module allows calculation of variables which are not directly available in the input datasets. A typical

example is total column ozone (toz) which is usually included in observational datasets (e.g., ESACCI-OZONE, Loyola et al.,

2009; Lauer et al., 2017), but is not part of the CMIP model data request. Instead the model output includes a three dimensional

ozone concentration field. In this case, an algorithm to derive total column ozone from the ozone concentrations and air

pressure is included in the preprocessor. Such algorithms can also be provided by the user. A corresponding custom CMOR25

table with the required variable metadata (standard_name, units, long_name, etc.) must also be provided, since this information

is not available in the standard tables. Variable derivation is activated in the variable dictionary of the recipe setting the flag

derive: true. Note that, by default, the preprocessor gives priority to existing variables in the input data before attempting

to derive them, e.g. if a derived variable is already available in the observational dataset. This behavior can be changed by

forcing variable derivation, i.e. the preprocessor will derive the variable even if it is already available in the input data, by30

setting force_derivation: true. The ESMValCore package currently includes derivation algorithms for 29 variables, listed

in Table 2.
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4.2 CMOR check and fixes

Similar to ESMValTool v1.0, the CMOR check module checks for compliance of the netCDF input data with the CF metadata

convention and CMOR standards used by the ESMValTool. As in v1.0, it checks for the most common dataset problems (e.g.,

coordinate names and ordering, units, missing values, etc.) and includes a number of project-, dataset- and variable-specific

fixes to correct these known errors. In v1.0, the format checks and fixes were based on the CMOR tables of the CMIP55

project (https://github.com/PCMDI/cmip5-cmor-tables). This has now been extended and allows the use of CMOR tables from

different projects (like CMIP5, CMIP6, obs4mips, etc.) or user-defined custom tables (required in case of derived variables

which are not part of an official data request, see Sect. 4.1). The CMOR tables for the supported projects are distributed

together with the ESMValCore package, using the most recent version available at the time of the release. The adoption of Iris

with strict requirements of CF compliance for input data, required the implementation of fixes for a larger number of datasets10

compared to v1.0. Although from a user’s perspective this makes the reading of some datasets more demanding, the stricter

standards enforced in the new version of the tool ensure their correct interpretation and reduce the probability of unintended

behavior or errors.

4.3 Level selection and vertical interpolation

Reducing the dimensionality of input data is a common task required by diagnostics. Three-dimensional fields are often an-15

alyzed by first extracting two-dimensional data at a given level. In the preprocessor, level selection can be performed on any

input data containing a vertical coordinate, like pressure level, altitude or depth. One or more levels can be specified by the

levels key in the preprocessors section of the recipe: this may be a (list of) numerical value(s), a dataset name whose vertical

coordinate can be used as target levels for the selection, or a predefined set of CMOR standard levels. If the requested level(s)

is (are) not available in the input data, a vertical interpolation will be performed among the available input levels. In this case,20

the interpolation scheme (linear or nearest neighbor) can be specified as a recipe setting (scheme), and extrapolation can be

enabled or disabled. The interpolation is performed by the Python-stratify package which, in turn, uses a C library for optimal

computational performance. This operation preserves units and masking patterns.

4.4 Land/Sea/Ice masking

The masking module allows to extract specific data domains, such as land-, sea- or ice-covered regions, as specified by the25

mask_out setting in the recipe. The grid points in the input data corresponding to the specified domain are masked out by

setting their value to missing, i.e. using the netCDF attribute _FillValue. The masking module uses the CMOR fx-variables

to extract the domains. These variables are usually part of the data requests of CMIP and other projects, and therefore have

the advantage of being on the same grid as their corresponding models. For example, the fx-variables sftlt and sftot are

used to define land- or sea-covered regions, respectively, on regular and irregular grids. In case these variables are not available30

for a given dataset, as is often the case for observational datasets, the masking module uses the Natural Earth shape files to

generate a mask at the corresponding horizontal resolution. This latter option is currently only available for regular grids.
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4.5 Horizontal regridding

Working with a common horizontal grid across a collection of datasets is a very important aspect of multi-model diagnostics

and metric computations. Although model and observational datasets are provided at different native grid resolutions, it is

often required to scale them to a common grid in order to apply diagnostic analyses, as the root-mean-square error (RMSE)

at each grid point, or to calculate multi-model statistics (see Sect. 4.8). This operation is required both from a numerical point5

of view (common operators can not be applied on numerical data arrays with different shapes) and from a statistical point of

view (different grid resolutions imply different Euclidian norms, hence data from each model has different statistical weights).

The regridding module can perform horizontal regridding onto user-specified target grids (target_grid) with a number of

interpolation schemes (scheme) available. The target grid can either be a standard regular grid with a resolution of M ×N

degrees, or the grid of a given dataset (for example, the reference dataset). Regridding is then performed via interpolation.10

While the target grid is often a standard regular grid, the source grids exhibit a larger variety. Particularly challenging are

grids where the native grid coordinates do not coincide with standard latitudes and longitudes, often referred to as irregular

grids, although varying terminology exists. As a consequence, the relationship between source and target grid cells can be very

complex. Such irregular grids are common for ocean data, where the poles are placed over land to avoid the singularities in

the computational domain, thereby distorting the resulting grid. Irregular grids are also commonly used for map projections15

of regional models. As long as these grids exhibit a rectangular topology, data living on them can still be stored in cubes

and the resulting coordinates in the latitude-longitude coordinate system can be provided in standardized form as auxiliary

coordinates following the CF conventions. For CMIP data, this is mandatory for all irregular grids. The regridding module

uses this information to perform regridding between such grids, allowing, for example, for the easy inclusion of ocean data in

multi-model analyses.20

The regridding procedure also accounts for masked data, meaning that the same algorithms are applied while preserving the

shape of the masked domains. This can lead to small numerical errors, depending on the domain under consideration and its

shape. The choice of the correct regridding scheme may be critical in case of masked data. Using an inappropriate option may

alter the mask significantly and thus introduce a large bias in the results. For example, bilinear regridding uses the nearest grid

points in both horizontal directions to interpolate new values. If one or more of these points are missing, calculation is not25

possible and a missing value is assigned to the target grid cell. This procedure always increases the size of the mask, which

can be particularly problematic for areas where the original mask is narrow, e.g. islands or small peninsulas in case of land/sea

masking. A much more recommended scheme in this case is nearest-neighbor regridding. This option approximately preserves

the mask, resulting in smaller biases compared to the original grid. Depending on the target grid, the area-weighted scheme

may also be a good choice in some cases. The most suitable scheme is strongly dependent on the specific problem and there30

is no one-fits-all solution. The user needs to be aware that regridding is not a trivial operation which may lead to systematic

errors in the results. The available regridding schemes are summarized in Table 1.
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4.6 Missing value masking

When comparing model data to observations, the different data coverage can introduce significant biases (e.g., de Mora et al.,

2013). Coverage of observational data is often incomplete. In this case, the calculation of even simple metrics like spatial

averages could be biased, since a different number of grid-boxes are used for the calculations if data are not consistently

masked. The preprocessor implements a missing values masking functionality, based on an approach which was originally part5

of the “performance metrics” routines of ESMValTool v1.0. This approach has been implemented in Python as a preprocessor

function, which is now available to all diagnostics. The missing value masking requires the input data to be on the same

horizontal and vertical grid, and therefore must necessarily be performed after level selection and horizontal regridding. The

data can, however, have different temporal coverage. For each grid point, the algorithm considers all values along the time

coordinate (independently of its size) and the fraction of such values which are missing. If this fraction is above a user-10

specified threshold (threshold_fraction) the grid point is left unchanged, otherwise it is set to missing along the whole time

coordinate. This ensures that the resulting masks are constant in time and allows masking datasets with different time coverage.

Once the procedure has been applied to all input datasets, the resulting time-independent masks are merged to create a single

mask which is then used to generate consistent data coverage for all input datasets. In case of multiple selected vertical levels,

the missing values masks are assembled and applied to the grid independently at each level.15

This approach minimizes the loss of generality by applying the same threshold to all datasets. The choice of the threshold

strongly depends on the datasets used and on their missing value patterns. As a rule of thumb, the higher the number of missing

values in the input data, the lower the threshold, which means that the selection along the time coordinate must be less strict in

order to preserve the original pattern of valid values and to avoid completely masking out the whole input field.

4.7 Temporal and spatial subsetting20

All basic time extraction and concatenation functionalities have been ported from v1.0 to the v2.0 preprocessor and have not

changed significantly. Their purpose is to retrieve the input data and extract the requested time range as specified by the keys

start_year and end_year for each of the dataset dictionaries of the ESMValTool recipe (see Sect. 3 for more details). If the

requested time range is spread over multiple files, a common case in the CMIP5 data pool, the preprocessor concatenates

the data before extracting the requested time period. An important new feature of time concatenation is the possibility to25

concatenate data across different model experiments. This is useful, for instance, to create time-series combining the CMIP

historical experiment with a scenario projection. This option can be set by defining the exp key of the dataset dictionary in the

recipe as a Python list, e.g. [historical, rcp45]. These operations are only applied while reading the original input data.

More specific functions are applied during the preprocessing phase to extract a specific subset of data from the full dataset.

This extraction can be done along the time axis, in the horizontal direction or in the vertical direction. These functions gen-30

erally reduce the dimensionality of data. Several extraction operators are available to subset the data in time (extract_time,

extract_season, extract_month) and in space (extract_region, extract_named_region, extract_volume, extract_transect,

extract_trajectory), see again Table 1.
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Table 2. List of variables for which derivation algorithms are available in ESMValTool v2.0, and the corresponding input variables. ISCCP

is the International Satellite Cloud Climatology Project, TOA means top-of-the-atmosphere.

Derived variable Description Realm Input variables for derivation

alb Albedo at the surface atmosphere rsds, rsus

amoc Atlantic Meridional Overturning Circulation ocean msftmyz

clhmtisccp ISCCP high level medium-thickness cloud area fraction atmosphere clisccp

clhtkisccp ISCCP high level thick cloud area fraction atmosphere clisccp

cllmtisccp ISCCP low level medium-thickness cloud area fraction atmosphere clisccp

clltkisccp ISCCP low level thick cloud area fraction atmosphere clisccp

clmmtisccp ISCCP middle level medium-thickness cloud area fraction atmosphere clisccp

clmtkisccp ISCCP middle level thick cloud area fraction atmosphere clisccp

fgco2_grid Surface downward CO2 flux relative to grid cell area ocean fgco2, sftof, sftlf

gtfgco2 Global total surface downward CO2 flux ocean fgco2, areacello

lvp Latent heat release from precipitation atmosphere hfls, ps, evspsbl

lwcre TOA longwave cloud radiative effect atmosphere rlut, rlutcs

lwp Liquid water path atmosphere clwvi, cliwi

nbp_grid Carbon mass flux out of atmosphere due to net biospheric land nbp, sftlf

production on land (relative to grid cell area)

netcre TOA net cloud radiative effect atmosphere rlut, rlutcs, rsut, rsutcs

rlns Surface net downward longwave radiation atmosphere rlds, rlus

rlnst Net atmospheric longwave cooling atmosphere rlds, rlus, rlut

rlnstcs Net atmospheric longwave cooling assuming clear sky atmosphere rldscs, rlus, rlutcs

rlntcs TOA net downward longwave radiation assuming clear sky atmosphere rlutcs

rsns Surface net downward shortwave radiation atmosphere rsds, rsus

rsnst Heating from shortwave absorption atmosphere rsds, rsdt, rsus, rsut

rsnstcs Heating from shortwave absorption assuming clear sky atmosphere rsdscs, rsdt, rsuscs, rsutcs

rsnstcsnorm Heating from shortwave absorption assuming clear sky atmosphere rsdscs, rsdt, rsuscs, rsutcs

normalized by incoming solar radiation

rsnt TOA net downward shortwave radiation atmosphere rsdt, rsut

rsntcs TOA net downward shortwave radiation assuming clear sky atmosphere rsdt, rsutcs

rtnt TOA net downward total radiation atmosphere rsds, rsut, rlut

sm Volumetric moisture in upper portion of soil column land mrsos

swcre TOA shortwave cloud radiative effect atmosphere rlut, rlutcs, rsut, rsutcs

toz Total ozone column atmosphere tro3, ps
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4.8 Multi-model statistics

Computing multi-model statistics is an integral part of model analysis and evaluation: individual models display a variety of

biases depending, for instance, on model configurations, initial conditions, forcings and implementation. When comparing

model data to observational data, these biases are typically smaller when multi-model statistics are considered. The preproces-

sor has the capability of computing a number of multi-model statistical measures: using the multi_model_statistics module5

enables the user to calculate either a multi-model mean, median or both, that are passed as additional dataset(s) to the diag-

nostics. Additional statistical operators (e.g., standard deviation) can be easily added to the module if required. Multi-model

statistics in are computed along the time axis, and as such, can be computed across a common overlap in time or across the

full length in time of each model: this is controlled by the span argument. Note that in case the full-length case is used, the

number of datasets actually used to calculate the statistics can vary along the time coordinate if the datasets cover different10

time ranges. The preprocessor function is capable of excluding any dataset in the multi-model calculations (option exclude):

a typical example is the exclusion of the observational dataset from the multi-model calculations. Model datasets must have

consistent shapes, which is needed from a statistical point of view since weighting is not yet implemented. Furthermore, data

with a dimensionality higher than four (time, vertical axis, two horizontal axes) are also not supported.

4.9 Temporal and spatial statistics15

Changing the spatial and temporal dimensions of model and observational data is a crucial part of most analyses. In addi-

tion to the subsetting described in Sect. 4.7, a second general class of preprocessor functions applies statistical operators

along a temporal (time_average, seasonal_mean, annual_mean) or spatial (zonal_statistics, meridional_statistics,

area_statistics, and volume_statistics) axis. In the current version, these operators only support averaging, with the

exception of area_statistics, zonal_statistics and meridional_statistics, which also allow the calculation of me-20

dian, standard deviation, variance, minimum, and maximum along the given axis. An additional operator, depth_integration,

calculates the volume-weighted z-dimensional sum of the input cube. Like the subsetting operators (Sect. 4.7), these also

significantly reduce the size of the input data passed to the diagnostics for further analysis and plotting.

4.10 Unit conversion

In ESMValTool v2.0, input units always follow the CMOR definition, which is not always the most convenient for plotting.25

Degree Celsius, for instance, is for some analyses more convenient that the standard Kelvin unit. Using the cf_units Python

package, the unit conversion module of the preprocessor can convert the physical unit of the input data to a different one, as

given by the units argument. This functionality can also be used to make sure that units are identical across all datasets before

applying a diagnostic.
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5 Additional features

5.1 CMORization of observational datasets

As discussed in Sect. 4.2, the ESMValTool requires the input data to be in netCDF format and to comply with the CF meta-

data convention and CMOR standards. Observational and reanalysis products in the standard CF/CMOR format are available

via the obs4mips (https://esgf-node.llnl.gov/projects/obs4mips/) and ana4mips (https://esgf.nccs.nasa.gov/projects/ana4mips/)5

projects, respectively (see also Teixeira et al., 2014). Their use is strongly recommended, when possible. Other datasets not

available in these archives can be obtained by the user from the respective sources and reformatted to the CF/CMOR standard

using the cmorizers included in the ESMValTool. The cmorizers are dataset-specific scripts that can be run once to generate

a local pool of observational datasets for usage with the ESMValTool, since no observational datasets are distributed with the

tool. Supported languages for cmorizers are Python and NCL. These scripts also include detailed instructions on where and how10

to download the original data and serve as templates to create new cmorizers for datasets not yet included. The current version

features cmorizing scripts for 30 observational and reanalysis datasets. As in v1.0, the observational datasets are grouped in

Tiers, depending on their availability: Tier 1 (for obs4mips and ana4mips datasets), Tier 2 (for other freely-available datasets),

and Tier 3 (for restricted datasets, i.e. dataset which requires a registration to be downloaded or that can only be obtained upon

request by the respective authors). An overview of the Tier 2 and Tier 3 datasets for which a cmorizing script is available in15

ESMValTool v2.0 is given in Table 3. Note that observational datasets cmorized for ESMValTool v1.0 may not be directly

working with v2.0, due to the much stronger constraints on metadata set by the Iris library.

5.2 Provenance and tags

ESMValTool v2.0 contains a large number of recipes that perform a wide range of analyses on many different scientific themes

(see the companion papers). Depending on the application, sorting and tracking of the scientific output (plots and netCDF files)20

produced by the tool can therefore be quite challenging. To simplify this task, ESMValTool v2.0 implements a provenance and

tagging system that allows to document and organize the results, while keeping track of all the input data used to produce them

(reproducibility and transparency of the results).

Provenance information is generated using the W3C-PROV reference format and collected at run-time and attached to any

output (plots and netCDF files) produced by the tool and is also saved to a separate log file. Using the W3C-PROV format25

ensures that the ESMValTool provenance is compatible with other (external) tools for viewing and processing provenance in-

formation. Examples of stored information include: all global attributes of input netCDF files, preprocessor settings, diagnostic

script settings, and software version numbers. Along with this rather technical information, a set of scientific provenance tags

are available. These include, for example, diagnostic script name and recipe authors, funding projects, references for citation

purposes, as well as tags for categorizing the result plots into various scientific topics (like chemistry, dynamics, sea-ice, etc.)30

realms (land, atmosphere, ocean, etc.) or statistics applied (RMSE, anomaly, trend, climatology, etc.). This facilitates the pub-

lication and browsing of the ESMValTool output on web-pages, like the ESMValTool-based CMIP6 results browser hosted

20
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Table 4. Times required for running recipe_perfmetrics_CMIP5.yml with ESMValTool v1.1.0 and v2.0 using different numbers of

maximum parallel tasks. Note that v1.0 did not support parallelization. The corresponding maximum memory usage as diagnosed in v2.0 is

also shown. Each number in this table corresponds to the median of 10 ESMValTool runs, to account for the variability in the performance

across different nodes.

Number of parallel tasks Run-time v1.0 [mins] Run-time v2.0 [mins] Max. memory usage v2.0 [Gb]

1 (serial) 534.1 177.1 41.5

2 – 78.7 41.8

4 – 45.2 44.1

8 – 27.4 54.0

16 – 19.6 62.4

32 – 16.6 66.9

64 – 16.5 74.7

68 (max) – 16.2 75.0

by the ESGF node at the Deutschs Klima RechenZentrum (DKRZ, https://cmip-esmvaltool.dkrz.de/), where model developers

and users can inspect the results and filter them according to their scientific interests.

5.3 Automated testing and coding standards

To ensure code stability, maintainability and quality, the ESMValCore package and the installation procedures are automatically

tested on a continuous integration server (Circle CI, https://circleci.com/) every time a change to the source code is pushed to5

the GitHub repository, making sure that these core components are reliable. Furthermore, static code analysis is performed

by Codacy (https://www.codacy.com/) on all Python code, to identify possible sources of error without requiring any extra

effort by the developers. Less strict static code analysis and basic requirements for the code formatting style is implemented

for the diagnostics of the ESMValTool in form of a unit test, to enforce a clean, uniform-looking and easy-to-read code for

all supported languages (Python, NCL, R and Julia). Code reviewers are encouraged to make use of the CircleCI and Codacy10

results to ensure that all contributions to the ESMValTool are reliable and can be maintained in the future with reasonable

effort.

6 Performance and scaling tests

To demonstrate the improved performance of ESMValTool v2.0 over its predecessor version, a benchmark test has been per-

formed for a representative recipe. The test was performed on the post-processing nodes of the Mistral Supercomputer at the15

DKRZ (see https://www.dkrz.de/up/systems/mistral for more details).

The ESMValTool recipe_perfmetrics_CMIP5.yml (see Supplement) is used as a benchmark and compared with the corre-

sponding namelist of v1.1.0 (Eyring et al., 2016c). This recipe (namelist) is used as a test case as it represents all typical oper-

21
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ations performed by the ESMValTool fairly well. For consistency, the recipe (namelist) in the two ESMValTool versions being

compared contains exactly the same diagnostics and variables and is applied to the same datasets (models and observations)

over identical time periods. The results produced with this setup are identical in v1.1.0 and v2.0. Since ESMValTool v1.1.0 did

not support parallel execution, the performances of the two versions in running this recipe (namelist) can be only compared in

serial mode. For v2.0, benchmarking results are further analyzed using an increasing number of parallel tasks to demonstrate5

the gain in run-time when taking advantage of this new feature.

The benchmarking results are summarized in Table 4 and show that already in serial mode the time required to run the recipe

with the new version is reduced by about a factor of three. Taking advantage of the task-based parallelization capability of v2.0,

the performance can be further improved. This allows reducing the run-time up to a maximum of a factor of about 33 with

respect to v1.1.0 when using parallel capabilities. The maximum theoretical performance is obtained when all recipe tasks (6810

in this example) are executed in parallel. Note however, that the run-time is limited by the slowest task in the recipe, which

acts as a bottleneck. As shown in Table 4, this implies that no significant gain is obtained for this recipe when increasing the

number of parallel tasks above 32. A further aspect that needs to be considered here is that increasing the number of parallel

tasks requires a larger amount of memory (last column in Table 4), since data from all tasks running simultaneously must be

stored in memory at the same time. The optimal choice of the number of parallel tasks to be used depends, therefore, on the15

total number of tasks in the recipe, on the differences in their individual run-times, and on the amount of memory available on

the machine in use. Memory-intensive recipes, for instance, may require to be executed with a small number of parallel tasks

on machines with limited memory, at the expense of the recipe run-time.

7 Summary

A new version of the ESMValTool has been developed to address the challenges posed by the increasing data volume of20

simulations produced by Earth System Models as contributions to large model intercomparison projects, such as CMIP6. The

code of ESMValTool v2.0 has been completely restructured and now includes an independent Python package (ESMValCore),

which features core functionalities such as the task manager, a revised preprocessor and an improved interface. The set of

diagnostic scripts implementing scientific analysis on a wide range of Earth System Model variables and realms has also been

extended and is described in the companion papers Eyring et al. (2019), Lauer et al. (2019) and Weigel et al. (2019).25

The redesigned ESMValCore package and its implementation in ESMValTool v2.0 resulted in significant improvements

for both users (improved user-friendliness and more customization options) and developers (better code readability and easier

maintenance). Benchmark tests performed with a representative ESMValTool recipe demonstrated the huge improvement in

terms of performance (run-time) achieved by this new version: in serial mode it is already a factor of 3 faster than the previous

ESMValTool version and can be even faster when executed in parallel, with a factor of more than 30 reduction in run-time30

attainable on powerful compute resources. The centralization of the preprocessing operations in a core package also facilitated

further optimization of the code, the possibility of running the ESMValTool in parallel and higher consistency among different

diagnostics (e.g. regridding and masking of data). The revised and simplified interface also enables an easy installation and
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configuration of the ESMValTool for running at high-performance computing centers where data are stored, such as the super

nodes of the ESGF. In addition to the technical improvements discussed in this paper, ESMValTool v2.0 also features many

new diagnostics and metrics which are discussed in detail in the three companion papers: Eyring et al. (2019), Lauer et al.

(2019) and Weigel et al. (2019).

The ESMValTool undergoes continuous development, and additional improvements are constantly being implemented or5

planned for future releases. These include (but are not limited to):

– an increased flexibility of the CMOR check module of the preprocessor, allowing for the automatic recognition and

correction of more errors in the input datasets, thus making reading of data more flexible, especially for data which are

not part of any CMIP data request;

– more regridding options featuring, for example, masking options beyond the standard CMOR-fx masks of the CMIP10

data request, especially for irregular grids;

– a new preprocessor module for model ensemble statistics, reducing the amount of input data to be processed in multi-

ensemble analyses;

– the increased usage of Dask arrays in preprocessor functions to keep the memory requirements low and further improve

the performance;15

– the possibility of reusing the output produced by specific preprocessor-variable combinations across different diagnos-

tics, thus further improving the ESMValTool performance, while also reducing the disk space requirements;

– linking external tools such as the Community Intercomparison Suite (Watson-Parris et al., 2016, CIS) to the ESMValTool

to target more specific topics, such as the spatial and temporal co-location of model and satellite data.

Note that some of the above issues could in principle already be addressed in ESMValTool v2.0 at the diagnostic level,20

but being general purpose functionalities, their implementation should take place in ESMValCore, where high quality code

standard and testing will ensure their correct implementation.

The ESMValTool is a community development with currently more than 100 developers that contribute to the code. The

wider climate community is encouraged to use the ESMValTool and to participate in this development effort, by joining

the ESMValTool development team for contributions of additional more in-depth diagnostics for evaluation of Earth System25

Models.

8 Code availability

ESMValTool (v2.0) is released under the Apache License, VERSION 2.0. The latest release of ESMValTool v2.0 is pub-

licly available on Zenodo at https://doi.org/10.5281/zenodo.3401363. The source code of the ESMValCore package, which

is installed as a dependency of the ESMValTool v2.0, is also publicly available on Zenodo at https://doi.org/10.5281/zenodo.30

3387139. ESMValTool and ESMValCore are developed on the GitHub repositories available at https://github.com/ESMValGroup.
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